Variable range of the RKKY interaction in edged graphene.

نویسندگان

  • J M Duffy
  • P D Gorman
  • S R Power
  • M S Ferreira
چکیده

The indirect exchange interaction is one of the key factors in determining the overall alignment of magnetic impurities embedded in metallic host materials. In this work we examine the range of this interaction in magnetically doped graphene systems in the presence of armchair edges using a combination of analytical and numerical Green function approaches. We consider both a semi-infinite sheet of graphene with a single armchair edge, and also quasi-one-dimensional armchair-edged graphene nanoribbons (GNRs). While we find signals of the bulk decay rate in semi-infinite graphene and signals of the expected one-dimensional decay rate in GNRs, we also find an unusually rapid decay for certain instances in both, which manifests itself whenever the impurities are located at sites which are a multiple of three atoms from the edge. This decay behavior emerges from both the analytic and numerical calculations, and the result for semi-infinite graphene can be interpreted as an intermediate case between ribbon and bulk systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Screening, Kohn anomaly, Friedel oscillation, and RKKY interaction in bilayer graphene.

We calculate the screening function in bilayer graphene (BLG) in both the intrinsic (undoped) and the extrinsic (doped) regimes within the random phase approximation, comparing our results with the corresponding single layer graphene and the regular two-dimensional electron gas. We find that the Kohn anomaly is strongly enhanced in BLG. We also discuss the Friedel oscillation and the RKKY inter...

متن کامل

Indirect Exchange and Ruderman–Kittel–Kasuya–Yosida (RKKY) Interactions in Magnetically-Doped Graphene

Magnetically-doped graphene systems are potential candidates for application in future spintronic devices. A key step is to understand the pairwise interactions between magnetic impurities embedded in graphene that are mediated by the graphene conduction electrons. A large number of studies have been undertaken to investigate the indirect exchange, or RKKY (Ruderman-Kittel-Kasuya-Yosida), inter...

متن کامل

Ruderman-Kittel-Kasuya-Yosida interaction at finite temperature: Graphene and bilayer graphene

We investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities in both single layer and Bernal stacked bilayer graphene, finding a number of striking anomalies in the temperature dependence of this interaction. In undoped single layer graphene the strength of the RKKY interaction for substitutional impurities anomalously increases upon increasing temperature, an...

متن کامل

Fe-Fe adatom interaction and growth morphology on graphene

The nucleation and growth of Fe on graphene is highly unusual. A constantly increasing island density indicates the presence of strong, predominantly repulsive, adatom interactions. We study these interactions by first-principles calculations to identify their origin. We find that the interactions consist of a short-range attraction and longer-range repulsion. We show that electric dipole-dipol...

متن کامل

EFFECT OF COMPOSITION ON THE MAGNETIC BEHAVIOUR OF Gd2X COMPOUND

The eigenvalues of the isotropic magnetic interaction system extraction from Internal Field Approximation (IFA) q e computed. on the basis of RKKY for the complicated magnetic behaviour of Gd, X system X= (Au , Pt , Al , In ) as well as Gd. From the strength and slope of eigenvalue curves in different ranges of interaction the strength and sharpness of the magnetic transition can be suggest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2014